Comparison of cardiac displacement and strain imaging using ultrasound radiofrequency and envelope signals.
نویسندگان
چکیده
Echocardiographic strain imaging is a promising new method for quantifying and displaying the health of cardiac muscle. Accurate regional myocardial function analysis requires high spatial and temporal resolution in addition to fidelity to the underlying deformation. However, all current clinical approaches use speckle-tracking algorithms applied to B-mode images derived from envelope signals. Such approaches are inherently of lower spatial resolution, since they require larger data blocks for deformation tracking due to the absence of phase information. In this paper, we compare the strain estimation performance using B-mode, envelope and radiofrequency signals, utilizing data acquired from a uniformly elastic tissue mimicking phantom, cardiac simulation, and clinical in vivo data. Signal-to-noise ratio improvements using radiofrequency signals for linear and phased array geometries were 5.80 dB and 9.48 dB over that obtained with envelope signals (at peak strain) in phantom studies, respectively. Cardiac simulation studies demonstrate that when averaged over the two cardiac cycles, the mean standard deviation of estimated strain using envelope signals from two of the six segments for a short-axes view (anterior and anterolateral) were 48% and 44% higher than that obtained using radiofrequency signals. These segments were chosen since one was along while the other was situated lateral to the beam propagation direction. In a similar manner, in vivo analysis on a volunteer also indicate that the standard deviation of the estimated strain using B-mode and envelope signals were 16% and 42% higher than that obtained using radiofrequency signals in the anteroseptal segment, and 45% and 27% in the anterior segment. These results demonstrate the significant reduction in the variability of strain estimated along with improvements in the spatial resolution and signal-to-noise ratios obtained using radiofrequency signals.
منابع مشابه
Temperature Mapping Using Ultrasound Digital Images
Introduction: The success of hyperthermia depends on the accuracy of the temperature monitoring in the tumor and the surrounding normal tissue. In this study, the temperature changes were determined by computing the speckle displacement in the ultrasound digital images. Speckle tracking algorithm was used to compute the displacement. Materials and Methods: The experiment was perf...
متن کاملA novel saline infusion sonohysterography-based strain imaging approach for evaluation of uterine abnormalities in vivo: preliminary results.
In this article, we demonstrate the feasibility of saline infusion sonohysterography-based strain imaging for the determination of stiffness variations in uterine masses in vivo. Strain images are estimated using a 2-dimensional multilevel hybrid algorithm developed for sector array ultrasound transducers. Coarse displacements are initially estimated using envelope echo signals, followed by a g...
متن کاملQuasi-Static Ultrasound Elastography.
Elastography is a new imaging modality where elastic tissue parameters related to the structural organization of normal and pathological tissues are imaged. Basic principles underlying the quasi-static elastography concept and principles are addressed. The rationale for elastographic imaging is reinforced using data on elastic properties of normal and abnormal soft tissues. The several orders o...
متن کاملThree-dimensional canine heart model for cardiac elastography.
PURPOSE A three-dimensional finite element analysis based canine heart model is introduced that would enable the assessment of cardiac function. METHODS The three-dimensional canine heart model is based on the cardiac deformation and motion model obtained from the Cardiac Mechanics Research Group at UCSD. The canine heart model is incorporated into ultrasound simulation programs previously de...
متن کاملMyocardial elastography at both high temporal and spatial resolution for the detection of infarcts.
Myocardial elastography is a novel method for noninvasively assessing regional myocardial function, with the advantages of high spatial and temporal resolution and high signal-to-noise ratio (SNR). In this paper, in-vivo experiments were performed in anesthetized normal and infarcted mice (one day after left anterior descending coronary artery [LAD] ligation) using a high-resolution (30 MHz) ul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultrasonics
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2013